I don't understand all the effort being placed into chasing a specific pH number, when the general consensus is that if you keep your KH and calcium within normal levels, the actual pH is not that important as the range it is in. 7.8-8.5 is regarded as an acceptable range for pH in reef tanks. Anyone can do what they want, but seems like a lot of money and effort for a not so important goal.
Here is an excerpt from a Randy Holmes Farley article:
>
Acceptable pH Range
The acceptable pH range for reef tanks is an opinion rather than a clearly delineated fact, and will certainly vary based on who is providing the opinion. This range may also be quite different than the "optimal" range. Justifying what is optimal, however, is much more problematic than that which is simply acceptable, and we will focus on the latter. As a goal, I'd suggest that the pH of natural seawater, about 8.2, is appropriate, but tanks can clearly operate in a wider range of pH values. In my opinion, the pH range from 7.8 to 8.5 is an acceptable range for reef tanks, with several caveats. These are:
<ol>
<li>That the alkalinity is at least 2.5 meq/L, and preferably higher at the lower pH end of this range. In part, this statement is based on the fact that many reef tanks operate quite effectively in the pH 7.8 to 8.0 range, but that most of the best examples of these types of tanks incorporate calcium carbonate/carbon dioxide reactors that, while tending to lower the pH, keep the carbonate alkalinity fairly high (at or above 3 meq/L.). In this case, any problems associated with calcification at these lower pH values may be offset by the higher alkalinity.</li>
<li>That the calcium level is at least 400 ppm. Calcification becomes more difficult as the pH is lowered, and it also becomes more difficult as the calcium level is lowered. It would not be desirable to push all of the extremes of pH, alkalinity, and calcium at the same time. So if the pH is on the low side and cannot be easily changed (such as in a tank with a CaCO3/CO2 reactor), at least make sure that the calcium level is acceptable (~400-450 ppm).</li>
<li>Likewise, one of the problems at higher pH (above 8.2, but getting progressively more problematic with each incremental rise) is the abiotic precipitation of calcium carbonate (resulting in a drop in calcium and alkalinity, and the clogging of heaters and pump impellers). If you are going to push the pH to 8.4 or higher (as often happens in a tank using limewater), make sure that both the calcium and alkalinity levels are suitably maintained (that is, neither too low, inhibiting biological calcification, nor too high, causing excessive abiotic precipitation on equipment).</li>
</ol>>
Article: